TEORI MESIN DIESEL

Diesel berasal dari nama seorang insinyur dari Jerman yang menemukan mesin ini pada tahun 1893, yaitu Dr. Rudolf Diesel. Ia mendapatkan paten (RP 67207) berjudul ‘Arbeitsverfahren und für Ausführungsart Verbrennungsmaschinen’. Pada waktu itu mesin tersebut tergantung pada panas yang dihasilkan ketika kompresi untuk menyalakan bahan bakar. Bahan bakar ini diteruskan ke silinder oleh tekanan udara pada akhir kompresi.

Pada tahun 1924, Robert Bosch, seorang insinyur dari Jerman, mencoba mengembangkan pompa injeksi daripada menggunakan metode tekanan udara yang akhirnya berhasil menyempurnakan ide dari Rudolf Diesel. Keberhasilan Robert Bosch dengan mesin dieselnya tersebut sampai saat ini digunakan oleh masyarakat.

1. Prinsip Kerja Mesin Diesel

Mesin/motor diesel (diesel engine) merupakan salah satu bentuk motor pembakaran dalam (internal combustion engine) di samping motor bensin dan turbin gas. Motor diesel disebut dengan motor penyalaan kompresi (compression ignition engine) karena penyalaan bahan bakarnya diakibatkan oleh suhu kompresi udara dalam ruang bakar. Dilain pihak motor bensin disebut motor penyalaan busi (spark ignition engine) karena penyalaan bahan bakar diakibatkan oleh percikan bunga api listrik dari busi.

Cara pembakaran dan pengatomisasian (atomizing) bahan bakar pada motor diesel tidak sama dengan motor bensin. Pada motor bensin campuran bahan bakar dan udara melelui karburator dimasukkan ke dalam silinder dan dibakar oleh nyala listrik dari busi. Pada motor diesel yang diisap oleh torak dan dimasukkan ke dalam ruang bakar hanya udara, yang selanjutnya udara tersebut dikompresikan sampai mencapai suhu dan tekanan yang tinggi. Beberapa saat sebelum torak mencapai titik mati atas (TMA) bahan bakar solar diinjeksikan ke dalam ruang bakar.      Dengan suhu dan tekanan udara dalam silinder yang cukup tinggi maka partikel-partikel bahan bakar akan menyala dengan sendirinya sehingga membentuk proses pembakaran. Agar bahan bakar solar dapat terbakar sendiri, maka diperlukan rasio kompresi 15-22 dan suhu udara kompresi kira-kira 600ºC.

Meskipun untuk motor diesel tidak diperlukan system pengapian seperti halnya pada motor bensin, namun dalam motor diesel diperlukan sistem injeksi bahan bakar yang  berupapompa injeksi (injection pump) dan pengabut (injector) serta perlengkapan bantu lain. Bahan bakar yang disemprotkan harus mempunyai sifat dapat terbakar sendiri (self ignition).

2. Perbedaan Utama Mesin Diesel Dan Mesin Bensin

Motor diesel dan motor bensin mempunyai beberapa perbedaan utama, bila ditinjau dari beberapa item di bawah ini, yaitu (lihat Tabel 1)

 1.Tabel_1

Motor diesel juga mempunyai keuntungan dibanding motor bensin, yaitu:

a.  Pemakaian bahan bakar lebih hemat, karena efisiensi panas lebih baik, biaya operasi lebih hemat karena solar lebih murah.
b.  Daya tahan lebih lama dan gangguan lebih sedikit, karena tidak menggunakan sistem pengapian
c.  Jenis bahan bakar yang digunakan lebih banyak
d.  Operasi lebih mudah dan cocok untuk kendaraan besar, karena variasi momen yang terjadi pada perubahan tingkat kecepatan lebih kecil.

Secara singkat prinsip kerja motor diesel 4 tak adalah sebagai berikut:

a. Langkah isap, yaitu waktu torak bergerak dari TMA ke TMB. Udara diisap melalui katup isap sedangkan katup buang tertutup.
b. Langkah kompresi, yaitu ketika torak bergerak dari TMB ke TMA dengan memampatkan udara yang diisap, karena kedua katup isap dan katup buang tertutup, sehingga tekanan dan suhu udara dalam silinder tersebut akan naik.
c. Langkah usaha, ketika katup isap dan katup buang masih tertutup, partikel bahan bakar yang disemprotkan oleh pengabut bercampur dengan udara bertekanan dan suhu tinggi, sehingga terjadilah pembakaran. Pada langkah ini torak mulai bergerak dari TMA ke TMB karena pembakaran berlangsung bertahap.
d. Langkah buang, ketika torak bergerak terus dari TMA ke TMB dengan katup isap tertutup dan katup buang terbuka, sehingga gas bekas pembakaran terdorong keluar.

3.Prinisp_Kerja_Motor_4_Tak

3. Proses pembakaran mesin diesel

Proses pembakaran dibagi menjadi 4 periode:

a)    Periode 1: Waktu pembakaran tertunda (ignition delay) (A -B) Pada periode ini disebut fase persiapan pembakaran, karena partikel-partikel bahan bakar yang diinjeksikan bercampur dengan udara di dalam silinder agar mudah terbakar.

b)    Periode 2: Perambatan api (B-C) Pada periode 2 ini campuran bahan bakar dan udara tersebut akan terbakar di beberapa tempat. Nyala api akan merambat dengan kecepatan tinggi sehingga seolah-olah campuran terbakar sekaligus, sehingga menyebabkan tekanan dalam silinder naik. Periode ini sering disebut periode ini sering disebut pembakaran letup.

c)    Periode 3: Pembakaran langsung (C-D) Akibat nyala api dalam silinder, maka bahan bakar yang diinjeksikan langsung terbakar. Pembakaran langsung ini dapat dikontrol dari jumlah bahan bakar yang diinjeksikan, sehingga periode ini sering disebut periode pembakaran dikontrol.

d)    Periode 4: Pembakaran lanjut (D-E) Injeksi berakhir di titik D, tetapi bahan bakar belum terbakar semua. Jadi walaupun injeksi telah berakhir, pembakaran masih tetap berlangsung. Bila pembakaran lanjut terlalu lama, temperatur gas buang akan tinggi menyebabkan efisiensi panas turun.

4.Pembakaran

Bentuk ruang bakar mesin diesel

Ruang bakar pada motor diesel lebih rumit disbanding ruang bakar motor bensin. Bentuk ruang bakar pada motor diesel sangat menentukan kemampuan mesin, sebab ruang bakar tersebut direncanakan dengan tujuan agar campuran bahan udara dan bahan bakar menjadi homogen dan mudah terbakar sekaligus.

Ruang bakar motor diesel digolongkan menjadi 2 tipe, yaitu:

a.    Tipe ruang bakar langsung (direct combustion chamber)
b.    Tipe ruang bakar tambahan (auxiliary combustion chamber)

Tipe ruang bakar tambahan terdapat 3 macam, yaitu:

1.    Ruang bakar kamar muka (precombustion chamber)
2.    Ruang bakar pusar (swirl chamber)
3.    Ruang bakar air cell (Air cell combustion chamber)

5.Ruang_Bakar_langsung

Ruang Bakar Langsung

Keuntungan ruang bakar langsung adalah: (1) efisiensi panas lebih tingi, pemakaian bahan bakar lebih hemat karena bentuk ruang bakar yang sederhana, (2) start dapat mudah dilakukan pada waktu mesin dingin tanpa menggunakan alat bantu start busi pijar (glow plug), dan (3) cocok untuk mesinmesin besar karena konstruksi kepala silinder sederhana.

Kerugian ruang bakar langsung adalah: (1) memerlukan kualitas bahan bakar yang baik, (2) memerlukan tekanan injeksi yang lebih tinggi, (3) sering terjadi gangguan nozzle, umur nozzle lebih pendek karena menggunakan nozzle lubang banyak (multiple hole nozzle), dan (4) dibandingkan dengan jenis ruang bakar tambahan, turbulensi lebih lemah, jadi sukar untuk kecepatan tinggi.

6.engine

7.engine

4. Komponen-komponen Mesin Diesel

Komponen-komponen mesin Diesel tidak berbeda jauh dengan komponen mesin bensin. Kumpulan dari komponen-komponen (elemen) tersebut membentuk satu kesatuan dan saling bekerja sama disebut dengan engineEngine tersebut akan bekerja dan menghasilkan tenaga dari proses pembakaran kemudian mengubahnya menjadi energi gerak serta mengubah gerak lurus piston menjadi gerak putar. Engine merupakan bagian utama untuk penggerek dalam rangkaian kendaraan. Sebagian besar dari kendaraan menggunakan model pembakaran dalam (Combussion Engine). Pada model tersebut proses pembakaran terjadi didalam silinder. Pada siklus kerja pembakaran, setelah didapat udara untuk dimampatkan dalam silinder oleh piston, bahan bakar (solar) disemprotkan kedalam silinder dengan menggunakan Fuel Injector, maka terjadilah proses pembakaran dan ekspansi dari proses tersebut menghasilkan tenaga. Dalam rangkaian mesin terdapat beberapa komponen yang membentuk satu kesatuan untuk menghasilkan tenaga. Komponen-komponen tersebut adalah :

4.1. Crankcase dan Cyclinder Sleeve

Crankcase atau bak engkol ditempatkan dibawah bagian blok silinder. Pada bagian atasnya dibuat sedemikian rupa untuk tempat poros engkol (crankshaft) yang ditumpu oleh bantalan-bantalan. Crankcase dibuat dari cast iron dan dibentuk rigid dengan konsentrasi tegangan dan perubahan bentuk yang sangat kecil. Cyclinder sleeve adalah dinding silinder atau dinding tempat pembakaran yang mempunyai permukaan halus.

8.Crank_Case

4.2. Piston dan Ring Piston

Piston adalah komponen yang berfungsi untuk menerima tekanan atau ekspansi pembakaran kemudian diteruskan ke crankshaft melalui connecting rod. Komponen yang menghubungkan antara piston dengan connecting rod disebut piston pin. Untuk mencegah agar tidak terjadi kebocoran antara piston dengan dinding silinder dan masuknya minyak pelumas keruang bakar, maka pada bagian atas piston dipasang tiga buah ring piston yaitu dua ring untuk kompresi dan satu ring untuk pelumasan. Piston harus mempunyai sifat tahan terhadap tekanan tinggi dan dapat bekerja dalam kecepatan tinggi.

Pada mesin Colt Diesel ini, piston dibuat dari bahan alluminium alloys casting yang mempunyai sisi atau clereance antara piston dengan cyclinder sleevePiston pinyang digunakan adalah full floating, dimana tidak bebas bergerak terhadap piston pin, tetapi bebas bergerak terhadap conecting rod.

Piston ring berfungsi sebagai seal perapat untuk mencegah terjadinya kebocoran antara piston dengan dinding silinder dan mencegah masuknya minyak pelumas kedalam ruang bakar serta memindahkan sebagian besar panas piston ke dinding silinder.

Piston ring terbuat dari special cast iron dan diberi cut joint untuk memudahkan pemasangan kedalam alur yang terdapat pada piston. Untuk mesin Colt Diesel ini, permukaan setiap ring yang bergesekan adalah hard chrome plated, kecuali untuk yang kedua. Pada piston terdapat tiga ring yang terpasang, yaitu dua compression ring dan satu oil ringCompression ring berfungsi untuk mencegah kebocoran gas selama langkah kompresi dan langkah kerja, sedangkan oil ring berfungsi untuk mengikis kelebihan minyak pelumas dari dinding silinder dan mencegahnya masuk kedalam ruang bakar.

9.Piston_Ring

Keterangan gambar 7 :

1. Piston
2. Oil Ring
3. nd Compression Ring
4. st Compression Ring

4.3.  Connecting Rod dan Connecting Rod Bearing

Connecting rod adalah bagian yang menghubungkan antara piston dengan crankshaftConnecting rod ini secara berulang-ulang bekerja dengan penuh kekuatan menerima beban. Oleh karena itu connecting rod dibuat dari bahan baja spesial.

Connecting rod bearing terdiri dari dua jenis yaitu jenis bearing model sisipan (insert bearing) dan jenis bearing model tuangan. Pada umumnya bearing model sisipan banyak digunakan karena dapat dipasang dengan tepat dan dapat diganti apabila rusak.

10.Rod

Keterangan gambar 8 :

  1. Connecting Rod Bushing 5.   Upper Connecting Rod Bearing
  2. Connecting Rod 6.   Lower Connecting Rod Bearing
  3. Connecting Rod Cap A.  Tanda Untuk Meluruskan
  4. Connecting Rod Bolt B.   Mass Mark

4.4. Crankshaft

Crankshaft mempunyai tugas penting mengubah gerak lurus menjadi gerak putar. Pada Colt Diesel ini, crankshaft yang digunakan adalah highly rigid die forging integral dengan balance weightBalance weight dipasang untuk menjamin keseimbangan perputarannya. Pada ujung depan crankshaft, terdapat crankshaft pulleydan crankshaft gear yang diikat dengan baut. Crankshaft pulley memutar alternator dan water pump melalui V-Belt.

Pada mesin Colt Diesel ini, bahan main bearing terbuat dari bahan paduan khusus kelmet, yaitu bahan yang terbuat dari steel backing dengan campuran tembaga dan timah sebagai lapisannya. Lapisan ini lebih keras dari logam putih dan lebih tahan terhadap panas. Upper main bearing mempunyai oil groove dan lubang oilyang segaris dengan lubang oil pada crankshaft.

11.Crank_Shaft

4.5. Flywheel

Flywheel merupakan piringan yang terbuat dari cast iron dan dibaut pada ujung crankshaftCrankshaft hanya mendapatkan tenaga putaran dari langkah kerja saja. Agar crankshaft dapat bekerja pada langkah lainnya, crankshaft harus dapat menyimpan daya putaran yang diperolehnya. Bagian yang menyimpan tenaga putaran ini adalah flywheel. Pada sekeliling flywheel dipasang ring gear yang berhubungan dengan starter pinion.

12.Fly_Wheel

4.6. Mekanisme Katup

Bagian-bagian yang menggerakkan membuka dan menutup katup pada waktu yang teratur disebut mekanisme katup. Mekanisme katup dibagi dalam beberapa susunan katup yaitu jenis katup sisi (side valve) dan jenis katup kepala (overhead valve). Pada mesin Colt Diesel ini katup yang digunakan adalah jenis overhead valve.

Bagian-bagian yang terdapat dalam mekanisme katup antara lain adalah sebagai berikut :

  • Kepala Katup: Merupakan bagian katup yang mempunyai bentuk kerucut 45o atau  30o. Bila katup tertutup, katup akan menempel dengan rapat pada kedudukan katup. Kepala katup dibuat dalam berbagai bentuk untuk mengurangi tahanan hisap dan menyempurnakan pendinginan.
  • Batang Katup: Batang katup dibuat untuk bergerak didalam penghantar batang katup, karena itulah katup harus dapat bergerak dengan baik. Pada bagian bawah batang katup terdapat alur untuk tempat penahanan pegas.
  • Pegas Katup: Pegas katup adalah pegas spiral yang bekerja menutupkan katup. Kebanyakan mesin dilengkapi dengan satu pegas katup pada setiap katup, tetapi ada juga yang menggunakan dua buah pegas yang mempunyai tegangan yang berbeda. Apabila tegangan pegas lemah, kemungkinan gas akan keluar dari katup dan tenaga mesin menjadi berkurang.
  • Push Rod: Push rod merupakan bagian batang kecil yang menghubungkan rocker arm dan valve lifter, yang berfungsi memindahkan gerakan lifter ke ujung rocker arm.
  • Rocker Arm: Rocker arm merupakan bagian yang dipasangkan diatas kepala silinder dan didukung pada bagian tengahnya oleh poros rocker arm. Bila push rodmengangkat keatas (menekan) salah satu  rocker arm, maka akan menekan ujung batang katup dan menyebabkan katup terbuka.
13.Katup

5. SISTEM PELUMASAN

5.1.      Pelumasan pada Mesin Colt Diesel

Dalam kontruksi mesin banyak sekali terdapat bagian komponen yang bergerak, komponen tersebut seperti pistonconeccting rodcrank shaftcam shaft, katup, dan masih banyak komponen-komponen lain. Pelumasan dimaksudkan untuk mengurangi gesekan langsung antara dua bagian (komponen) yang berhubungan.

Pada mesin Colt Diesel ini, minyak pelumas dipompakan oleh oil pump. Tipe oil pump yang digunakan adalah tipe gear. Selain sebagai bahan untuk pelumasan, minyak pelumas mempunyai fungsi-fungsi lain yaitu :

  • Mengurangi panas dengan cara mengambil panas dari komponen-komponen mesin yang dilaluinya dan mengusahakan gesekan sekecil mungkin.
  • Mengeluarkan (mengambil) kotoran-kotoran yang terdapat pada komponen-komponen mesin yang dilaluinya sehingga dapat mencegah proses korosi.

5.2. Komponen-komponen utama Sistem Pelumasan

5.2.1. Oil Pump

Oil pump menghisap oli dari crankcase dan menyalurkan keseluruh komponen mesin. Oil filter dipasangkan pada lubang  masuk pompa oli (oil pump inlet) untuk menyaring kotoran-kotoran. Pada Colt Diesel untuk engine 4D31 dan 4D34 oil pump digerakkan oleh camshaft skew gear. Sedangkan untuk engine 4D33 oil pumpdigerakkan oleh camshaft gearOil pump yang digunakan adalah model roda gigi. Pada model ini, terdapat dua buah roda gigi yang berkaitan. Bila salah satu roda gigi berputar, maka roda gigi lain akan ikut berputar berlawanan arah. Oleh karena itu, oli yang terdapat diantara celah-celah dua buah roda gigi didesak dari lubang masuk kelubang buang.

Oil pump jenis ini sangat sederhana tetapi dapat bekerja dengan baik. Oil pump digerakkan oleh putaran crankshaft melalui crankshaft gear yang putarannya berlawanan arah dengan putaran oil pump gear. Apabila tekanan oli meningkat menjadi lebih tinggi dari tekanan standar, oli akan dikembalikan ke oil pump oleh kerjarelief valve. Hal ini dilakukan untuk mencegah kemacetan pada sistem pelumasan oleh karena tekanan yang berlebihan. Relief valve dipasang pada oil pump.

14.Oil_Pump
15.Oil_Pump

5.2.2. Oil Cooler

Oil cooler adalah alat yang digunakan untuk merubah panas antara coolant dan oli yang bertekanan. Oil cooler mempunyai sebuah bypass valve.

16.Oil_Cooler

17.Oil_Cooler

Bypass valve akan bekerja apabila kekentalan oli tinggi atau saat oil cooler element tersumbat. Hal tersebut akan menyebabkan tahanan aliran menjadi tinggi, sehingga bypass valve akan terbuka agar oli kembali secara langsung ke oil filter element tanpa melalui oil cooler.

18.Bypass_Valve

Regulator valve akan bekerja bila tekanan oli pada main oil gallery menjadi lebih tinggi dari nilai standar. Regulator valve akan membuka agar oli kembali ke oil pan. Dengan demikian tekanan oli akan kembali standar.

19.Regulator_Valve

5.2.3. Oil Filter

Dalam jangka waktu tertentu, oli akan kotor. Hal ini di sebabkan adanya partikel-partikel logam, kotoran dari udara, karbon serta bahan-bahan lain yang masuk ke dalam oli. Bagian-bagian berat akan mengendap, sedangkan bagian-bagian yang ringan akan ikut terbawa melumasi mesin yang akan memperbesar keausan dan kemungkinan panas yang berlebihan (over heating)

Pada oil pump cover terdapat sebuah relief valve yang berfungsi mengembalikan oli ke oil pan apabila tekanan melebihi nilai standar. Hal ini di lakukan untuk menghindari overload pada sistem pelumasan.

20.Oil_Filter

5.3. Beberapa Pelumasan pada Komponen-komponen Mesin

Komponen-komponen mesin yang saling berhubungan perlu dilumasi untuk memperkecil keausan serta menghindari korosi, sehingga umur pemakaian mesin akan lebih panjang dan menjadikan kinerja mesin lebih baik lagi.

5.3.1. Pelumasan pada Conecting RodPiston dan Main Bearing

Pada pelumasan ini, terdapat lubang oli yang menghubungkan main oil gallery ke setiap bearing. Oli mengalir masuk melalui lubang oli yang terdapat padacrankshaft untuk melumasi connecting rod bearing kemudian masuk melalui lubang yang terdapat pada connecting rod untuk melumasi connecting rod small end bushing. Oli disemprotkan dari oil jet yang terdapat pada connecting rod small end untuk melumasi piston.

21.Pelumasan

22.Pelumasan

 

5.3.2. Pelumasan pada Camshaft dan Mekanisme katup

Camshaft bushing dilumasi oleh oli yang mengalir melalui saluran main oil gallery ke setiap bushing. Pada bagian ujung depan camshaft journal terdapat lubang oli yang menyalurkan oli untuk melumasi camshaft gear dan mekanisme katup. Oli masuk ke rocker shaft braket bagian depan, kemudian masuk ke rocker shaft dan melumasi setiap rocker bushing. Pada saat yang sama, oli memancar dari lubang yang terdapat pada bagian atas rocker arm untuk melumasi permukaan atas dimana terdapat valve cam dan valve stem. Oli masuk ke lubang push rod pada cyclinder head dan crankshaft untuk melumasi cam sebelum kembali ke oil pan.

23.Pelumasan

24.Pelumasan

5.3.3. Pelumasan Timming Gear

Oli yang melewati main oil gallery mengalir melalui bagian dalam camshaft dan idler shaft, untuk melumasi setiap gear selama berputar. Pada bagian dalam timming gear case terdapat oil jet yang secara otomatis memberikan tekanan pelumasan secara konstan. Pada idler gearshaft dilengkapi oil jet untuk pelumasan auto timmer.

Oil jet dipasang pada bagian bawah komponen main oil gallery pada setiap silinder dan mendinginkan piston dengan menyemprotkan oli kearah bagian dalampistonOil jet dipasang dengan check valve yang membuka dan menutup berdasarkan tekanan yang ditentukan. Check valve menutup pada putaran rendah, hal ini dilakukan untuk mencegah meningkatnya tekanan volume oli pada komponen sistem pelumasan.

25.Pelumasan

Dasar Mesin Diesel

29012010

Siklus Dasar Mesin Diesel

Sebuah mesin diesel adalah jenis mesin termal yang menggunakan proses pembakaran internal (internal combustion engine) untuk mengubah energi yang tersimpan dalam ikatan kimia dari bahan bakar menjadi energi mekanik berdaya guna.

Ini terjadi dalam dua langkah:
Pertama, bahan bakar akan bereaksi secara kimia atau pembakaran dan melepaskan energi dalam bentuk panas.
Kedua panas menyebabkan gas yang terperangkap dalam silinder memuai dan pemuaian gas dibatasi oleh silinder menyebabkan piston bergerak memperluas ruang silinder.

Gerakan bolak-balik (reciprocating) piston ini kemudian diubah menjadi gerak rotasi oleh poros engkol (crank shaft, kruk as). Untuk mengkonversi energi kimia bahan bakar menjadi energi mekanik berdaya guna semua pembakaran internal mesin harus melalui empat kegiatan: isap, kompresi, usaha dan buang. Bagaimana peristiwa tersebut dihitung dan bagaimana mereka terjadi membedakan berbagai jenis mesin.

Semua mesin diesel masuk ke dalam salah satu dari dua kategori, mesin siklus dua langkah atau 2 tak atau mesin siklus empat langka atau 4 tak. Siklus mengacu pada setiap operasi atau rangkaian kejadian yang berulang. Dalam kasus mesin 4 tak, mesin memerlukan empat langkah piston (isap, kompresi, usaha dan buang) untuk menyelesaikan satu siklus penuh. Oleh karena itu, diperlukan dua putaran dari poros engkol atau 720° dari rotasi poros engkol (360° x 2) untuk menyelesaikan satu siklus. Dalam mesin 2 tak peristiwa isap, kompresi, usaha dan buang terjadi dalam satu putaran poros engkol atau 360°.

Timing

Dalam pembahasan berikut dari siklus diesel adalah penting untuk mengingat kerangka waktu di mana setiap tingkah laku yang diperlukan terjadi. Waktu yang diperlukan untuk gerak pembuangan gas sisa keluar dari silinder dan udara segar ke dalam silinder, kompres udara, menginjeksikan bahan bakar dan untuk membakar bahan bakar.

Jika mesin diesel 4 tak berjalan konstan pada 1.500 putaran per menit (rpm), poros mesin akan berputar 25 putaran tiap detik atau 9.000 derajat per detik. Satu langkah selesai dalam waktu sekitar 0,02 detik.

 

rocker arm

Siklus 4 Langkah

Dalam mesin 4 tak, camshaft (noken as) disesuaikan sehingga kecepatan putarnya hanya setengah dari kecepatan putar poros engkol atau 1 putaran camshaft berbanding 2 putaran crankshaft. Ini artinya bahwa poros engkol harus membuat dua putaran lengkap sebelum noken as menyelesaikan satu putaran.

Bagian berikut akan menggambarkan empat langkah, mesin diesel memiliki katup isap dan katup buang dengan 3.5 inchi boring dan 4 inchi langkah dengan rasio kompresi 16:1, saat melewati satu siklus. Kita akan mulai pada langkah isap. Semua tanda waktu yang diberikan adalah secara umum dan akan bervariasi dari mesin ke mesin.

Isap (Intake)

intakeKetika piston bergerak ke atas mendekati 28° sebelum TMA yang diukur dengan perputaran poros engkol (crankshaft), cuping (nok) camshaft mulai mengangkat cam follower. Hal ini menyebabkan batang pendorong (pushrod) bergerak keatas dan mendorong sumbu pengungkit pelatuk (rockrer arm), pelatuk kemudian mendorong katup isap (intake valve) ke bawah dan katup (valve,klep) mulai terbuka. Langkah isap kini mulai sementara katup buang masih terbuka. Aliran gas buang membuat kondisi tekanan rendah di dalam silinder dan akan membantu menarik muatan udara segar masuk kedalam silinder seperti yang ditunjukkan pada Gbr. 1.

Piston melanjutkan perjalanan ke atas sampai TMA, sementara udara segar masuk dan gas buang keluar. Sekitar 12° setelah TMA, cuping pembuangan camshaft berputar sehingga katup buang akan mulai menutup. Katup akan sepenuhnya ditutup sekitar 23° setelah TMA. Hal ini dicapai berkat pegas katup yang tertekan ketika katup dibuka, memaksa rocker arm dan cam follower kembali lagi sesuai dengan perputaran cuping camshaft. Dalam kerangka waktu selama kedua katup isap dan katup buang terbuka disebut katup saling tumpang tindih atau valve overlap (dalam contoh ini 51° overlap) dan digunakan untuk memungkinkan udara segar membantu memindahkan gas buang keluar dan mendinginkan silinder atau pembilasan. Pada kebanyakan mesin, 30 sampai 50 kali volume silinder, udara pembilasan melalui silinder selama overlap.

Udara segar yang kelebihan ini juga memberikan efek pendinginan yang diperlukan pada bagian-bagian mesin. Ketika piston melewati TMA dan mulai melakukan perjalanan menuruni lubang silinder, gerakan piston ini membuat sebuah langkah pengisapan dan terus menarik udara segar masuk ke dalam silinder.

Kompresi (Compression)

compressionPada 35° setelah titik mati bawah (TMB), katup isap mulai tertutup. Pada 43° setelah TMB atau 137° sebelum TMA, katup isap intake pada kedudukannya dan sepenuhnya tertutup. Di titik ini muatan udara pada tekanan normal sekitar 14,7 psi atm dan suhu udara ambien berkisar ~80°F, seperti diperlihatkan pada Gbr.2 Sekitar 70° sebelum TMA, piston telah menempuh perjalanan sekitar 2,125 inchi atau sekitar setengah dari ruang langkah kerja silinder, sehingga mengurangi setengah volume silinder. Suhu dua kali lipatnya menjadi berkisar ~160°F dan tekanan sekitar ~34 psi atm.

Sekitar 43° sebelum TMA piston telah melakukan perjalanan 3,062 inchi keatas dan volume sekali lagi dibagi dua. Akibatnya, suhu naik dua kali lipat menjadi sekitar ~320°F dan tekanan ~85 psi atm. Ketika piston telah mencapai 3,530 inchi dari ruang langkah kerja silinder, volume silinder dibagi dua lagi dan suhu mencapai sekitar 640°F dan tekanan 277 psi atm. Ketika piston telah mencapai 3,757 inci dari ruang langkah kerja silinder, volume dibagi dua dan suhu meningkat sampai 1280°F dan tekanan mencapai 742 psi atm. Dengan luas piston 9,616 inchi kuadrat maka tekanan dalam silinder mengerahkan kekuatan sekitar 7.135 lb atau 3,5 ton gaya tekan.

Hitungan di atas untuk mesin ideal dan memberikan contoh yang baik dari apa yang terjadi di dalam mesin selama kompresi. Dalam sebuah mesin yang sebenarnya, tekanan hanya mencapai sekitar 690 psi atm. Hal ini terutama disebabkan hilangnya panas ke bagian mesin sekitarnya.

Injeksi bahan bakar (Fuel Injection)

injectionBahan bakar dalam keadaan cair diinjeksikan ke dalam silinder pada waktu dan perkiraan yang tepat untuk memastikan bahwa tekanan pembakaran pada piston di paksa tidak terlalu dini atau terlalu terlambat, seperti yang ditunjukkan pada Gbr.3. Bahan bakar memasuki silinder dimana panas udara yang dimampatkan telah ada, namun bahan bakar hanya akan terbakar ketika berada dalam keadaan menguap, hal tersebut tercapai melalui penambahan panas dan dicampur dengan pasokan oksigen. Tetesan menit pertama pemasukan bahan bakar ke ruang bakar dengan cepat menguap. Penguapan dari bahan bakar menyebabkan udara disekitar bahan bakar mengalami pendinginan sehingga udara membutuhkan waktu untuk mendapatkan panas yang cukup untuk menyalakan menguapan bahan bakar. Injeksi bahan bakar dimulai pada 28° sebelum TMA dan berakhir pada 3° setelah TMA, karena itu bahan bakar diinjeksikan untuk durasi dari 31°.

Usaha (Power)

powerKedua katup tertutup dan muatan udara segar telah dikompresi. Bahan bakar telah disuntikkan dan mulai terbakar. Setelah piston melewati TMA, panas dengan cepat dihasilkan oleh penyalaan dari bahan bakar dan menyebabkan peningkatan tekanan pada silinder. Suhu pembakaran sekitar 2.336°C. Kenaikan gaya tekan pada piston ke bawah meningkatkan gaya puntir pada poros engkol pada langkah usaha, sebagaimana diilustrasikan pada Gbr.4. Energi yang dihasilkan oleh proses pembakaran tidak semua dimanfaatkan. Dalam mesin diesel 2 tak, hanya sekitar 38% dari daya yang dihasilkan dimanfaatkan untuk melakukan pekerjaan, sekitar 30% terbuang dalam bentuk panas dibuang melalui sistem pendingin dan sekitar 32% dalam bentuk panas ditolak keluar melalui knalpot. Sebagai perbandingan, mesin diesel 4 tak memiliki distribusi termal dari 42% dikonversi menjadi kerja yang berdaya guna, 28% panas yang dibuang melalui sistem pendinginan dan 30% panas yang dibuang keluar melalai knalpot.

Pembuangan (Exhaust)

exhaustSeraya piston mendekati 48° sebelum TMB, cuping cam pembuangan mulai memaksa cam follower keatas, menyebabkan katup buang tertekan dari kedudukannya. Seperti yang ditunjukkan pada Gbr.5, gas buang mulai mengalir keluar dari katup buang akibat tekanan silinder dan masuk ke dalam manifold pembuangan. Setelah melalui TMB, piston bergerak ke atas dan mengalami percepatan sampai kecepatan maksimum pada 63° sebelum TMA. Dari titik ini piston mengalami perlambatan. Selama kecepatan piston melambat, kecepatan gas yang mengalir keluar silinder membuat tekanan sedikit lebih rendah daripada tekanan atmosfer. Pada 28° sebelum TMA, katup isap intake terbuka dan siklus dimulai lagi.

 

Catatan:
Dan untuk mesin multi silinder memiliki urutan pembakaran (firing order) untuk menjaga keseimbangan mesin dan mencegah agar crank shaft tidak terpuntir hingga bengkok atau patah yang dapat mengakibatkan mesin menjadi macet dan silinder pecah,…

About these ads

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d blogger menyukai ini: